875. Phthalans. Part II.* Ultraviolet and Infrared Spectra.

By W. R. Allison, W. R. Logan, G. T. Newbold, and T. J. Ross.
Some new phthalans are described and aspects of the ultraviolet and infrared spectra of these and known members are discussed. An infrared band assignment characteristic of the phthalan ring is put forward.

Apart from the parent phthalan (I), which has been prepared by the action of alkali on o-xylylene bromide ${ }^{1}$ and by pyrolysis of o-xylylene glycol, ${ }^{2}$ members of this series without substituents in the 1 - or 3 -position were unavailable until the discovery of the isomerisation of 4-hydroxymethylphthalides to phthalan-4-carboxylic acids, e.g., (IIa) to (IIIa). ${ }^{3-7}$ This paper discusses the ultraviolet and infrared spectra of these compounds and others derived from them.

(I)

(II)

(III)

	R^{\prime}	R^{\prime}	$R^{\prime \prime}$
a:	OMe	OMe	H
b:	OMe	Me	H
c:	OMe	OMe	Me
d:	OMe	OMe	OMe
e:	OMe	H	OMe

(VII)

$$
\begin{aligned}
& \mathrm{a}: \mathrm{R}=\mathrm{OMe} \\
& \mathrm{~b}: \mathrm{R}=\mathrm{Me}
\end{aligned}
$$

Ultraviolet spectra of 4-hydroxymethylphthalides were compared with those of the corresponding phthalan-4-carboxylic acids in five cases. The isomerisation showed no significant consistent trend in the wavelength positions of maxima or in the intensity of the long-wavelength band or of the middle band where present. It was notable, however, that the low-wavelength band ($212-221 \mathrm{~m} \mu$) showed a marked decrease in intensity ($\Delta \varepsilon 5-15 \times 10^{3}$) on passing from the phthalide derivative to the isomeric phthalan while the wavelength position did not exhibit a consistent trend: (IIa) $214 \rightarrow$ (IIIa) 213, $\Delta \varepsilon=-8400 ;^{3}$ (IIb) $212 \longrightarrow$ (IIIb) $214, \Delta \varepsilon-15,000 ; 5,8$ (IIc) $214 \longrightarrow$ (IIIc) 212, $\Delta \varepsilon-12,000 ;^{4}$ (IId) $218 \longrightarrow$ (IIId) $216, \Delta \varepsilon-5200 ;^{4}$ and (IIe) $221 \longrightarrow$ (IIIe) 216 $\mathrm{m} \mu, \Delta \varepsilon-9000{ }^{6}$

In order to ascertain the effect of ring closure of an o-bishydroxymethylbenzene to a

* Part I, J., 1958, 304.
${ }^{1}$ Willstätter and Veraguth, Ber., 1907, 40, 965.
${ }^{2}$ Entel, Ruof, and Howard, J. Amer. Chem. Soc., 1952, 74, 441.
${ }^{3}$ Brown and Newbold, J., 1952, 4878.
${ }^{4}$ Blair and Newbold, J., 1954, 3935.
${ }^{5}$ Blair, Logan, and Newbold, J., 1956, 2443.
${ }^{6}$ Logan and Newbold, J., 1957, 1946.
7 Blair, Logan, and Newbold, J., 1958, 304.
${ }^{8}$ Brown and Newbold, J., 1953, 1285.
phthalan upon the ultraviolet spectrum two corresponding pairs of compounds were prepared. The amino-dimethoxy-dialcohol (Va) and the amino-methoxy-methyl-dialcohol (Vb) were prepared by reduction of the corresponding phthalides (IVa) ${ }^{9}$ and (IVb) ${ }^{4}$ with lithium aluminium hydride. No hydrogenolysis of the alcohol group ortho to the aminogroup was noted in either reduction. ${ }^{7,10}$ 4-Amino-5:6-dimethoxyphthalan (VIIa) was prepared by conversion of 5:6-dimethoxyphthalan-4-carboxylic acid (IIIa) by way of the acid chloride into the amide (VIa), followed by Hofmann degradation. The aminophthalan (VIIa) was unaffected by hot dilute acid under conditions which converted 5:6-dimethoxy-phthalan-4-carboxylic acid (IIIa) into 4-hydroxymethylmeconin (IIa). 5-Methoxy-6-methylphthalan-4-carboxylic acid (IIIb) was transformed in a similar way without isolation of the acid chloride into the amide (VIb), and hence into 4 -amino-5-methoxy-6methylphthalan (VIIb). A comparison between the ultraviolet spectra of the aminoalcohols (V) and the corresponding aminophthalans (VII) shows that a hypsochromic shift occurs in the long-wavelength band on ring closure from the alcohol to the phthalan, together with a fall in intensity, i.e., (Va) \longrightarrow (VIIa) $\Delta \mathrm{m} \mu-8, \Delta \varepsilon-1450$ and $(\mathrm{Vb}) \longrightarrow$ (VIIb) $\Delta \mathrm{m} \mu-15, \Delta \varepsilon-1000$.

The infrared spectra of thirteen phthalans prepared in this Department have been examined, together with those of phthalan and tetrahydrophthalan, ${ }^{2}$ for a band which might be characteristic of the phthalan ring. As a result, a band at $910-900 \mathrm{~cm} .^{-1}$, usually narrow and of medium strength, has been assigned to this structural unit. This band is comparable with the symmetrical ring-stretching vibration at $913 \mathrm{~cm} .^{-1}$ shown by tetrahydrofuran. ${ }^{11}$ The stronger asymmetrical ring-stretching vibration shown by tetrahydrofuran at $1098-1075 \mathrm{~cm} .^{-1}$ was not characteristic in the phthalan spectra. The assignments are given in the Table. Two examples in the Table need comment: $5: 6$-di-methoxyphthalan-4-carboxyl chloride shows a normal band in Nujol mull but this is 21

Infrared bands of phthalans in the 11μ region.

Substituents in (I)				$\begin{gathered} \text { Max. } \\ \left(\mathrm{cm} . .^{-1}\right) \\ (\text { in } \mathrm{Nujol}) \end{gathered}$	$\begin{gathered} \text { Max. } \\ \left(\mathrm{cm}_{2}^{-1}\right) \\ \left(\mathrm{in} \mathrm{Cll}_{4}\right) \end{gathered}$	Substituents in (I)				$\begin{gathered} \text { Max. } \\ \left(\mathrm{cm}^{-1}\right) \\ (\mathrm{in} \mathrm{Nujol}) \end{gathered}$	$\begin{gathered} \text { Max. } \\ \left(\mathrm{cm}^{-1}\right) \\ \left(\mathrm{in} \mathrm{ClCl}^{2}\right) \end{gathered}$
4	5	6	7			4	5	6	7		
H	H	H	H^{2}	904*	-	$\mathrm{CO} \cdot \mathrm{NH}_{2}$	OMe	Me	H	905	907
$\mathrm{CO}_{2} \mathrm{H}$	H	H	H	904	-	NH_{2}	OMe	Me	H	891, 894	906
$\mathrm{CO}_{2} \mathrm{H}$	OMe	OMe	H	906, $900 \dagger$	909	$\mathrm{CO}_{2} \mathrm{H}$	OMe	H	OMe	904	908
COCl	OMe	OMe	H	902	881	$\mathrm{CO}_{2} \mathrm{Me}$	OMe	H	OMe	902	907
$\mathrm{CO}_{2} \mathrm{Me}$	OMe	OMe	H	901, 909	910	$\mathrm{CO}_{2} \mathrm{H}$	OMe	OMe	OMe	905	909
$\mathrm{CO} \cdot \mathrm{NH}_{2}$	OMe	OMe	H	906	907	$\mathrm{CO}_{2} \mathrm{H}$	OMe	OMe	Me	906	911
NH_{2}	OMe	OMe	H	902	906	Hexahyd	rophth	alan ${ }^{2}$		904*	
$\mathrm{CO}_{2} \mathrm{H}$	OMe	Me	H	909	907						

$\mathrm{cm} .^{-1}$ less in solution, while 4 -amino-5-methoxy-6-methylphthalan shows a normal value in solution with a doublet at a lower frequency in Nujol mull. A phthalan suspected of being substituted in the benzene ring should therefore be examined in both media before a conclusion is drawn. In order to test the specificity of the assignment the positions of bands (Nujol mull in $\mathrm{cm} .^{-1}$) between 950 and $850 \mathrm{~cm}^{-1}$ in a number of related compounds are given: 4-hydroxymethyl derivatives of meconin ($923 \mathrm{w}, 880 \mathrm{~m}, 871 \mathrm{~m}$), 7-methoxy-6methylphthalide ($918 \mathrm{w}, 896 \mathrm{w}, 883 \mathrm{w}$), $5: 6: 7$-trimethoxyphthalide (897 w), $6: 7$-di-methoxy-5-methylphthalide (871 w), $5: 7$-dimethoxyphthalide (882 w); the $3: 4$ - (942 w , $922 \mathrm{w}, 853 \mathrm{~m}$) and $4: 5$-dimethoxy- (877 m), 4-methoxy-5-methyl- (895 m), 3-amino-4:5-dimethoxy- (946 w), 3 -amino- (897 m broad), and 3 -amino- 4 -methoxy- 5 -methyl- (935 w , 833 m) derivative of o-bishydroxymethylbenzene. Other compounds examined were

[^0]m-dioxano(4' : $5^{\prime}-6: 7$)phthalide (887 m in CCl_{4}), 2 -aminobenzyl alcohol (932 m), 3-amino-2-methylbenzyl alcohol (904 m broad). 2-Methylbenzyl alcohol shows no band in this region. ${ }^{2}$

Experimental

Infrared spectra were measured on a Grubb-Parsons S4 spectrometer with sodium chloride optics. Accuracy in the 11μ region was checked by frequent reference to the 11.038μ band ${ }^{12}$ of polystyrene film. Light petroleum, where used, had b. p. 60-80 .
$5: 6$-Dimethoxyphthalan-4-carboxyl Chloride.-5:6-Dimethoxyphthalan-4-carboxylic acid ${ }^{3}$ (1.0 g .) was refluxed on the steam-bath for 1 hr . with thionyl chloride (5 c.c.), and the excess of thionyl chloride distilled off under reduced pressure. After being kept overnight in vacuo over sodium hydroxide the solid residue was crystallised from benzene-light petroleum (charcoal) to give the acid chloride (500 mg .) as blades, m. p. 102.5-103.5 (Found: C, 54.7 ; $\mathrm{H}, 4 \cdot 6$. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{Cl}$ requires $\mathrm{C}, 54 \cdot 4 ; \mathrm{H}, 4 \cdot 5 \%$).

5: 6-Dimethoxyphthalan-4-carboxyamide. -The crude acid chloride from the acid (1.0 g .) was treated in dry ether (20 c.c.) with liquid ammonia (50 c.c.) in portions. The solution was allowed to evaporate overnight; water (50 c.c.) was added to the residue and the mixture extracted with chloroform (3×50 c.c.). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue crystallised from chloroform-light petroleum, to give the amide (600 mg .) as needles, m. p. $134-135^{\circ}$ (Found: C, 59.2 ; H, $5.9 ; \mathrm{N}, 6.6$. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}$ requires C, $59 \cdot 1 ; \mathrm{H}, 5 \cdot 7 ; \mathrm{N}, 6 \cdot 3 \%$), $\lambda_{\text {max. }} 209(\varepsilon 27,000)$ and $308 \mathrm{~m} \mu(\varepsilon 3300)$ in EtOH. The amide sublimes at $130^{\circ} / 10^{-4} \mathrm{~mm}$. Infrared absorption bands in Nujol were at 3413, 3175 $\left(\mathrm{NH}_{2}\right)$, and $1669 \mathrm{~cm} .^{-1}(\mathrm{CO})$.

4-Amino-5:6-dimethoxyphthalan.-Finely powdered 5:6-dimethoxyphthalan-4-carboxyamide (740 mg .) was added at 0° to a portion ($10 \mathrm{c} . \mathrm{c}$.) of the hypobromite solution prepared by the addition of bromine (2.05 c.c.) to a stirred ice-cold 10% solution of potassium hydroxide ($100 \mathrm{c} . \mathrm{c}$.). After 20 min . at room temperature, the solution was heated to 80° (bath-temperature) for 15 min . The cooled solution was extracted with ether (3×25 c.c.) and the combined ethereal extracts were washed with 5% hydrochloric acid (2×50 c.c.). Basification of the acid washings with 10% aqueous sodium hydroxide, followed by isolation using ether and crystallisation from benzene-light petroleum, gave 4-amino-5: 6-dimethoxyphthalan (500 mg .) as plates, m. p. $96-97.5^{\circ}$ (Found: C, $61 \cdot 5 ; \mathrm{H}, 6 \cdot 4 . \quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 61 \cdot 5$; H, 6.7%). $\lambda_{\text {max. }}$ in EtOH $212(\varepsilon 39,300), 240(\varepsilon 8450)$, and $284 \mathrm{~m} \mu(\varepsilon 1400)$. Infrared absorption bands in Nujol were at 3413, 3333, and $3195 \mathrm{~cm} .^{-1}\left(\mathrm{NH}_{2}\right)$. The aminophthalan (200 mg .) was refluxed with 3 N -hydrochloric acid (5 c.c.) for $2 \frac{1}{4} \mathrm{hr}$. The cooled solution was basified, and the product isolated in ether and crystallised from benzene-light petroleum to give unchanged material as plates, m. p. and mixed m. p. 96- 97.5° (160 mg .).

5-Methoxy-6-methylphthalan-4-carboxyamide.-5-Methoxy-6-methylphthalan-4-carboxylic acid ${ }^{5}$ ($1 \cdot 1 \mathrm{~g}$.) was converted into the amide as described above. 5-Methoxy-6-methylphthalan4 -carboxyamide (0.75 g .) separated from ethanol (charcoal) as prismatic needles, m. p. 174-176 ${ }^{\circ}$ (Found: C, 63.75; H, 6.1. $\quad \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 63.75 ; \mathrm{H}, 6.3 \%$), $\lambda_{\text {max. }} 209.5(\varepsilon 22,500)$, and $295(\varepsilon 2300)$, inflexion at $238 \mathrm{~m} \mu(\varepsilon 5600)$, in EtOH, $\nu_{\text {max. }}$ in Nujol 3401, $3175\left(\mathrm{NH}_{2}\right)$ and $1664 \mathrm{~cm} .^{-1}(\mathrm{CO})$.

4 Anino-5-methoxy-6-methylphthalan.-By method used for the preparation of 4 -amino5: 6-dimethoxyphthalan, 5 -methoxy-6-methylphthalan-4-carboxyamide (514 mg .) gave the corresponding amino-compound (190 mg .), crystallising from light petroleum as needles, m. p. $74-76^{\circ}$ (Found: C, $67 \cdot 15 ; \mathrm{H}, 7 \cdot 3 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 67 \cdot 0 ; \mathrm{H}, 7 \cdot 3 \%$), $\lambda_{\text {max. }}$ in EtOH, $213(\varepsilon 40,000)$ and $276 \mathrm{~m} \mu(\varepsilon 1000)$, $\nu_{\text {max. }}$ in Nujol 3420,3330 , and $3236 \mathrm{~cm} .^{-1}\left(\mathrm{NH}_{2}\right)$.

Methyl 5: 7-Dimethoxyphthalan-4-carboxylate.-5 : 7-Dimethoxyphthalan-4-carboxylic acid ${ }^{6}$ was esterified in methanol by ethereal diazomethane, to give the methyl ester, needles, m. p. $150-151^{\circ}$ (from methanol) (Found: C, 60.2; H, 6.0. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, $60.5 ; \mathrm{H}, 5.9 \%$), $\lambda_{\text {max. }} 218(\varepsilon 23,700), 257(\varepsilon 11,500)$, and $300 \mathrm{~m} \mu(\varepsilon 5300)$ in EtOH.

1:2-Bishydroxymethyl-4-methoxy-5-methylbenzene.-To a boiling partial solution of lithium aluminium hydride (0.83 g .) in ether (140 c.c.) a solution of 6 -methoxy- 5 -methylphthalide (1.38 g .) in tetrahydrofuran (50 c.c.) was added dropwise with stirring. After $2 \frac{1}{2}$ hours' refluxing the mixture was cooled to 0° and the excess of hydride decomposed by ice. The

[^1]mixture was made alkaline with 10% sodium hydroxide solution ($60 \mathrm{c} . \mathrm{c}$.), and the ethereal layer separated. The aqueous layer was extracted with ether (5×60 c.c.). The combined ether extracts were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Crystallisation of the residue from benzene-light petroleum gave 1:2-bishydroxymethyl-4-methoxy-5-methylbenzene (1.1 g.), m. p. $71.5-72.5^{\circ}$ (Found: C, 66.2; H, 7.7. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, $65.9 ; \mathrm{H}, 7.7 \%$), $\lambda_{\text {max. }} 209$ ($\varepsilon 12,200$), 231 ($\varepsilon 9150$), and $280 \mathrm{~m} \mu(\varepsilon 1850)$ in EtOH.

3-Amino-1: 2-bishydroxymethyl-4-methoxy-5-methylbenzene.-7-Amino-6-methoxy-5-methylphthalide ${ }^{4}(2.0 \mathrm{~g}$.) was reduced with lithium aluminium hydride (1.2 g .), as described in the preceding experiment, to the alcohol (1.2 g .) which separated from benzene-light petroleum as rosettes of needles, m. p. 119° (Found: $\mathrm{C}, 60 \cdot 9 ; \mathrm{H}, \mathbf{7 . 5} . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 60.9$; $\mathrm{H}, 7.7 \%), \lambda_{\text {max. }} 219(\varepsilon 43,400)$ and $291 \mathrm{~m} \mu(\varepsilon 2000)$ in EtOH. The OON-triacetyl derivative, formed by the action of acetic anhydride and pyridine on the steam-bath for $\frac{1}{2} \mathrm{~h}$., crystallised from benzene-light petroleum as needles, m. p. 167-168 (Found: C, 59.9; H, 6.9. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}$ requires C, $59.4 ; \mathrm{H}, 6.55 \%$), $\lambda_{\text {max. }} 207(\varepsilon 36,800)$ and 273.5 ($\varepsilon 760$), infl. $230 \mathrm{~m} \mu(\varepsilon 10,300)$ in EtOH.

3-Amino-1 : 2-bishydroxymethyl-4:5-dimethoxybenzene.-7-Amino-m-meconin ${ }^{9}$ (1.0 g .) was reduced, as in the preceding experiment, to the alcohol (750 mg .) which separated from acetonelight petroleum as prismatic needles, m. p. 112° (Found: C, $56 \cdot 25$; H, $7 \cdot 0 . \quad \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}$ requires C, $56.3 ; \mathrm{H}, 7 \cdot 1 \%$), $\lambda_{\text {max. }} 213$ ($\varepsilon 39,800$), 292 ($\varepsilon 2850$), infl. $238 \mathrm{~m} \mu(\varepsilon 6600)$ in EtOH.

We thank the Department of Scientific and Industrial Research for an Award (to W. R. A.).
The Royal College of Science and Technology,
Glasgow.
[Received, July 11th, 1958.]

[^0]: ${ }^{9}$ McRae, VanOrder, Griffiths, and Habgood, Canad. J. Chem., 1951, $29,282$.
 ${ }^{10}$ Conover and Tarbell, J. Amer. Chem. Soc., 1950, 72, 3586.
 11 Jones and Sandorfy in "Technique of Organic Chemistry," Ed. Weissberger, Interscience, New York, 1956, Vol. IX, p. 437; Barrow and Searles, J. Amer. Chem. Soc., 1953, 75, 1175.

[^1]: ${ }^{12}$ Plyer and Peters, J. Res. Nat. Bur. Stand., 1950, 45, 462.

